Paste #289
Welcome To LodgeIt
Welcome to the LodgeIt pastebin. In order to use the notification feature a 31 day cookie with an unique ID was created for you. The lodgeit database does not store any information about you, it's just used for an advanced pastebin experience :-). Read more on the about lodgeit page. Have fun :-)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 | import numpy as np import warnings, sys #DN Note: code provided by Benjamin Johnson (CfA) # -------------------- # ATTENUATION CURVES # -------------------- def powerlaw(wave, tau_v=1, alpha=1.0, **kwargs): """Simple power-law attenuation, normalized to 5500\AA. :param wave: The wavelengths at which optical depth estimates are desired. :param tau_v: (default: 1) The optical depth at 5500\AA, used to normalize the attenuation curve. :returns tau: The optical depth at each wavelength. """ return tau_v * (wave / 5500)**(-alpha) def calzetti(wave, tau_v=1, R_v=4.05, **kwargs): """ Calzetti et al. 2000 starburst attenuation curve, with extrapolations to the FUV and NIR. :param wave: The wavelengths at which optical depth estimates are desired. :param tau_v: (default: 1) The optical depth at 5500\AA, used to normalize the attenuation curve. :param R_v: (default: 4.05) The ratio of total selective extinction, parameterizing the slope of the attenuation curve. A_v = R_v * E(B-V) :returns tau: The optical depth at each wavelength. """ p11 = 1 / 0.11 ff11 = 2.659 * (-2.156 + 1.509 * p11 - 0.198 * p11**2. + 0.011 * p11**3.0) + R_v p12 = 1 / 0.12 ff12 = 2.659 * (-2.156 + 1.509 * p12 - 0.198 * p12**2. + 0.011 * p12**3) + R_v slope1 = (ff12 - ff11) / 100. ff99 = 2.659 * (-1.857 + 1.040 / 2.19) + R_v ff100 = 2.659 * (-1.857 + 1.040 / 2.2) + R_v slope2 = (ff100 - ff99) / 100. # do it x = 1e4 / wave ff = (((wave >= 6300.) & (wave <= 22000)) * (2.659 * (-1.857 + 1.040 * x) + R_v)) ff += (((wave >= 1200.) & (wave < 6300)) * (2.659 * (-2.156 + 1.509 * x - 0.198 * x**2. + 0.011 * x**3.) + R_v)) ff += (wave < 1200.) * (ff11 + (wave - 1100.) * slope1) ff += (wave > 22000.) * (ff99 + (wave - 21900.) * slope2) ff[ff < 0] = 0 tau_lambda = tau_v * ff / R_v / 0.999479 return tau_lambda def chevallard(wave, tau_v=1, **kwargs): """ \tau_v dependent attenuation curves matched to disk RT models, as in Chevallard et al. 2013. No UV bump (or indeed tests in the UV at all). :param wave: The wavelengths at which optical depth estimates are desired. :param tau_v: (default: 1) The optical depth at 5500\AA, used to normalize the attenuation curve. :returns tau: The optical depth at each wavelength. """ # missing a UV bump alpha_v = 2.8 / (1 + np.sqrt(tau_v)) # +/- 25% bb = 0.3 - 0.05 * tau_v # +/- 10% alpha = alpha_v + bb * (wave * 1e-4 - 0.55) tau_lambda = tau_v * (wave / 5500.0)**(-alpha) return tau_lambda def conroy(wave, tau_v=1, R_v=3.1, f_bump=0.6, **kwargs): """ Conroy & Schiminovich 2010 dust attenuation curves including a decreased UV bump. :param wave: The wavelengths at which optical depth estimates are desired. :param tau_v: (default: 1) The optical depth at 5500\AA, used to normalize the attenuation curve. :param R_v: (default: 3.1) The ratio of total selective extinction, parameterizing the slope of the attenuation curve. A_v = R_v * E(B-V) :param f_bump: (default: 0.6) The strength of the 2175\AA UV bump, as a fraction of the bump strength in Cardelli et al. extinction curve. :returns tau: The optical depth at each wavelength. """ x = 1e4 / wave nx = x.shape[0] a = np.zeros_like(x) b = np.zeros_like(x) # IR 0.909 - 3.3 micron ir = (x >= 0.3) & (x < 1.1) a[ir] = 0.574 * x[ir]**1.61 b[ir] = -0.527 * x[ir]**1.61 # optical 0.303 - 0.909 micron opt = (x >= 1.1) & (x < 3.3) y = x[opt]-1.82 a[opt] = (1 + 0.177 * y - 0.504 * y**2 - 0.0243 * y**3 + 0.721 * y**4 + 0.0198 * y**5 - 0.7750 * y**6 + 0.330 * y**7) b[opt] = (1.413 * y + 2.283 * y**2 + 1.072 * y**3 - 5.384 * y**4 - 0.622 * y**5 + 5.303 * y**6 - 2.090 * y**7) # NUV 0.17 to 0.303 micron nuv = (x >= 3.3) & (x < 5.9) tmp = (-0.0370 + 0.0469 * f_bump - 0.601 * f_bump / R_v + 0.542 / R_v) fa = (3.3 / x[nuv])**6. * tmp tmp = 0.104 * f_bump / ((x[nuv] - 4.67)**2 + 0.341) a[nuv] = 1.752 - 0.316 * x[nuv] - tmp + fa tmp = 1.206 * f_bump / ((x[nuv] - 4.62)**2 + 0.263) b[nuv] = -3.09 + 1.825 * x[nuv] + tmp # FUV 0.125 - 0.17 micron fuv = (x >= 5.9) & (x < 8.0) fa = -0.0447 * (x[fuv] - 5.9)**2.0 - 0.00978 * (x[fuv] - 5.9)**3 fb = 0.213 * (x[fuv] - 5.9)**2. + 0.121 * (x[fuv] - 5.9)**3 tmp = 0.104 * f_bump / ((x[fuv] - 4.67)**2 + 0.341) a[fuv] = 1.752 - 0.316 * x[fuv] - tmp + fa tmp = 1.206 * f_bump / ((x[fuv] - 4.62)**2 + 0.263) b[fuv] = -3.09 + 1.825 * x[fuv] + tmp + fb alam = (a + b / R_v) # XUV below 1250AA xuv = x >= 8.0 x8 = 8.0 fa = -0.0447 * (x8 - 5.9)**2 - 0.00978 * (x8 - 5.9)**3 fb = 0.213 * (x8 - 5.9)**2. + 0.121 * (x8 - 5.9)**3 tmp = 0.104 * f_bump / ((x8 - 4.67)**2 + 0.341) af = 1.752 - 0.316 * x8 - tmp + fa tmp = 1.206 * f_bump / ((x8 - 4.62)**2 + 0.263) bf = -3.09 + 1.825 * x8 + tmp + fb a8 = (af + bf / R_v) alam[xuv] = (x8 / x[xuv])**(-1.3) * a8 return tau_v * alam def broken_powerlaw(wave, tau_v=1, alpha=[0.7, 0.7, 0.7], breaks=[0, 3000, 10000, 4e4], **kwargs): """ Attenuation curve as in V. Wild et al. 2011, i.e. power-law slope can change between regions. Superceded by Chevallard 2013 for optical/NIR. :param wave: The wavelengths at which optical depth estimates are desired. :param tau_v: (default: 1) The optical depth at 5500\AA, used to normalize the attenuation curve. :returns tau: The optical depth at each wavelength. """ if len(breaks) == len(alpha)+1: print("make sure of your power law breaks") tau = np.array(len(wave)) for i in range(alpha): inds = (wave > breaks[i]) & (wave <= breaks[i+1]) tau[inds] = tau_v * (wave / 5500)**alpha[i] return tau def wg00(wave, tau_v=1, geometry='SHELL', composition='MW', local='homogenous', **kwargs): """ Witt+Gordon 2000 DIRTY radiative transfer results, for idealized geometries. """ pass # ------------------ # EXTINCTION CURVES # ------------------ def cardelli(wave, tau_v=1, R_v=3.1, **kwargs): """ Cardelli, Clayton, and Mathis 1998 Milky Way extinction curve, with an update in the near-UV from O'Donnell 1994 :param wave: The wavelengths at which optical depth estimates are desired. :param tau_v: (default: 1) The optical depth at 5500\AA, used to normalize the attenuation curve. :param R_v: (default: 3.1) The ratio of total selective extinction, parameterizing the slope of the attenuation curve. A_v = R_v * E(B-V) :returns tau: The optical depth at each wavelength. """ # if (wave < 1e3).any() : # warnings.warn('Cardelli: extinction not defined (set to zero) below 1000AA') mic = wave*1e-4 x_sup, x_inf = 10.0, 0.3 x = 1 / mic a = np.zeros_like(x) b = np.zeros_like(x) w1 = (x >= 1.1) & (x <= 3.3) # Optical 0.303 to 0.909 micron w2 = (x >= x_inf) & (x < 1.1) # NIR 0.909 to 3.3 micron w3 = (x > 3.3) & (x <= 8) # UV 0.125 - 0.303 micron w4 = (x > 8.0) & (x <= x_sup) # XUV, 1000 -1250AA wsh = x > x_sup wlg = x < x_inf y = x[w1] - 1.82 a[w1] = (1 + 0.17699 * y - 0.50447 * y**2. - 0.02427 * y**3. + 0.72085 * y**4. + 0.01979 * y**5. - 0.77530 * y**6. + 0.32999 * y**7.0) b[w1] = (1.41338 * y + 2.28305 * y**2. + 1.07233 * y**3. - 5.38434 * y**4. - 0.62251 * y**5. + 5.30260 * y**6. - 2.09002 * y**7.) y = x[w2]**1.61 a[w2] = 0.574 * y b[w2] = -0.527 * y fa = x[w3] * 0. fb = x[w3] * 0. ou = (x[w3] > 5.9) # print(type(ou),ou[0], type(w3)) if ou.any(): y = x[w3][ou] - 5.9 fa[ou] = -0.04473 * y**2. - 0.009779 * y**3. fb[ou] = 0.2130 * y**2. + 0.1207 * y**3. a[w3] = 1.752 - 0.316 * x[w3] - 0.104 / ((x[w3] - 4.67)**2. + 0.341) + fa b[w3] = -3.090 + 1.825 * x[w3] + 1.206 / ((x[w3] - 4.62)**2. + 0.263) + fb y = x[w4] - 8. a[w4] = -1.073 - 0.628 * y + 0.137 * y**2. - 0.070 * y**3. b[w4] = 13.670 + 4.257 * y - 0.420 * y**2. + 0.374 * y**3. tau = a + b / R_v return tau_v * tau def smc(wave, tau_v=1, **kwargs): """Pei 1992 SMC extinction curve. :param wave: The wavelengths at which optical depth estimates are desired. :param tau_v: (default: 1) The optical depth at 5500\AA, used to normalize the attenuation curve. :returns tau: The optical depth at each wavelength. """ if (wave < 1e3).any(): warnings.warn('SMC: extinction extrapolation below 1000AA is poor') mic = wave * 1e-4 aa = [185., 27., 0.005, 0.010, 0.012, 0.030] ll = [0.042, 0.08, 0.22, 9.7, 18., 25.] bb = [90., 5.50, -1.95, -1.95, -1.80, 0.00] nn = [2.0, 4.0, 2.0, 2.0, 2.0, 2.0] abs_ab = np.zeros_like(mic) norm_v = 0 # hack to go from tau_b to tau_v mic_5500 = 5500 * 1e-4 for i, a in enumerate(aa): norm_v += aa[i] / ((mic_5500 / ll[i])**nn[i] + (ll[i] / mic_5500)**nn[i] + bb[i]) abs_ab += aa[i] / ((mic / ll[i])**nn[i] + (ll[i] / mic)**nn[i] + bb[i]) return tau_v * (abs_ab / norm_v) def lmc(wave, tau_v=1, **kwargs): """ Pei 1992 LMC extinction curve. :param wave: The wavelengths at which optical depth estimates are desired. :param tau_v: (default: 1) The optical depth at 5500\AA, used to normalize the attenuation curve. :returns tau: The optical depth at each wavelength. """ if (wave < 1e3).any(): warnings.warn('LMC: extinction extrapolation below 1000AA is poor') mic = wave * 1e-4 aa = [175., 19., 0.023, 0.005, 0.006, 0.020] ll = [0.046, 0.08, 0.22, 9.7, 18., 25.] bb = [90., 5.50, -1.95, -1.95, -1.80, 0.00] nn = [2.0, 4.5, 2.0, 2.0, 2.0, 2.0] abs_ab = mic * 0. norm_v = 0 # hack to go from tau_b to tau_v mic_5500 = 5500 * 1e-4 for i, a in enumerate(aa): norm_v += aa[i] / ((mic_5500 / ll[i])**nn[i] + (ll[i] / mic_5500)**nn[i] + bb[i]) abs_ab += aa[i] / ((mic / ll[i])**nn[i] + (ll[i] / mic)**nn[i] + bb[i]) return tau_v * (abs_ab / norm_v) |