Paste #294
Welcome To LodgeIt
Welcome to the LodgeIt pastebin. In order to use the notification feature a 31 day cookie with an unique ID was created for you. The lodgeit database does not store any information about you, it's just used for an advanced pastebin experience :-). Read more on the about lodgeit page. Have fun :-)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 | from __future__ import print_function import matplotlib matplotlib.use('Agg') import yt,caesar import yt.utilities.physical_constants as const import numpy as np import sys from multiprocessing import Pool from yt import derived_field #from fast_histogram import histogram1d from os.path import expanduser home = expanduser("~") #this is just to insert the lookup tables in the same path sys.path.insert(0,"/blue/narayanan/desika.narayanan/despotic_lookup_table_generator/") from lookup_table_reader_z_units import * from astropy.io import fits import matplotlib.pyplot as plt import pdb,ipdb from astropy import constants as astropy_constants from astropy import units as u from glob2 import glob import itertools from datetime import datetime from filter_galaxy import filter_galaxy #============================================================================== #RUN PARAMETERS #============================================================================== caesarfile = '/orange/narayanan/desika.narayanan/gizmo_runs/simba/m25n512/output/Groups/caesar_0160_z2.000.hdf5' caesarfile = '/orange/narayanan/desika.narayanan/gizmo_runs/simba/m25n512/output/Groups/caesar_0088_z4.957.hdf5' snapshot = '/orange/narayanan/desika.narayanan/gizmo_runs/simba/m25n512/output/snapshot_160.hdf5' snapshot = '/orange/narayanan/desika.narayanan/gizmo_runs/simba/m25n512/output/snapshot_088.hdf5' galaxies = [int(sys.argv[1])] boxsize=500 zoom_boxsize = 50 oref=0 n_ref=64 unit_base = {'UnitLength_in_cm' : 3.08568e+21, 'UnitMass_in_g' : 1.989e+43, 'UnitVelocity_in_cm_per_s' : 100000, 'UnitTime_in_s' : 1} bbox = [[-boxsize,boxsize], [-boxsize,boxsize], [-boxsize,boxsize]] lookup_npzfilename = "/blue/narayanan/desika.narayanan/despotic_lookup_table_generator/high_res_abu_z.npz" #lookup_npzfilename ='/ufrc/narayanan/pg3552/despotic_lookup_table_generator/testintIntensity_final.npz' bin_width = 10 #km/s dim=2048 #dim=1024 turb_factor = 0.25 outdir = '/blue/narayanan/desika.narayanan/paper/ngvla_memo_narayanan/ppv_files/simba/m25n512/intIntensity/production_0.25/'#680a6ee_oldtable_intTB/' outdir = '/blue/narayanan/desika.narayanan/paper/ngvla_memo_narayanan/ppv_files/simba/m25n512/intIntensity/production_0.25_snap88/'#680a6ee_oldtable_intTB/' #outdir = '/blue/narayanan/desika.narayanan/paper/ngvla_memo_narayanan/ppv_files/simba/m25n512/intTb/production_0.25_snap160/'#680a6ee_oldtable_intTB/' #outdir = './' nlevels = 10 PARTICLES = True #flag says if we're going to do thinsg on a #particle-by-particle basis (and then smooth), vs doing smoothing first, and then doing the CO calculation. #INTENSITY_FLAG = True units = 'intIntensity' #units = 'intTb' nprocesses=1 #============================================================================== def _fmol(field,data): return ds.arr(h2_mass/(h2_mass+hi_mass)*data[("PartType0","Density")],'code_mass/code_length**3') def _WCO(field,data): return ds.arr(wco_particles,'K*km*s**(-1)') def _neutralhydrogen(field,data): return data[("PartType0","NeutralHydrogenAbundance")]*data[("PartType0","Density")] #def _WCO10(field,data): # return ds.arr(wco_particles[0,:],'K*km*s**(-1)') def _manual_renorm_density(field,data): return ds.arr(data["PartType0","density"],'code_mass/code_length**3') def _WCO10(field,data): return ds.arr(wco_particles[0,:]*data[("PartType0","Density")],'K*km*s**(-1)*code_mass/code_length**3') def _WCO21(field,data): return ds.arr(wco_particles[1,:]*data[("PartType0","Density")],'K*km*s**(-1)*code_mass/code_length**3') def _WCO32(field,data): return ds.arr(wco_particles[2,:]*data[("PartType0","Density")],'K*km*s**(-1)*code_mass/code_length**3') def _WCO43(field,data): return ds.arr(wco_particles[3,:]*data[("PartType0","Density")],'K*km*s**(-1)*code_mass/code_length**3') def _WCO54(field,data): return ds.arr(wco_particles[4,:]*data[("PartType0","Density")],'K*km*s**(-1)*code_mass/code_length**3') def _WCO65(field,data): return ds.arr(wco_particles[5,:]*data[("PartType0","Density")],'K*km*s**(-1)*code_mass/code_length**3') def _WCO76(field,data): return ds.arr(wco_particles[6,:]*data[("PartType0","Density")],'K*km*s**(-1)*code_mass/code_length**3') def _WCO87(field,data): return ds.arr(wco_particles[7,:]*data[("PartType0","Density")],'K*km*s**(-1)*code_mass/code_length**3') def _WCO98(field,data): return ds.arr(wco_particles[8,:]*data[("PartType0","Density")],'K*km*s**(-1)*code_mass/code_length**3') def _WCO109(field,data): return ds.arr(wco_particles[9,:]*data[("PartType0","Density")],'K*km*s**(-1)*code_mass/code_length**3') def _WCI10(field,data): return ds.arr(wci_particles[0,:]*data[("PartType0","Density")],'K*km*s**(-1)*code_mass/code_length**3') def _WCI21(field,data): return ds.arr(wci_particles[1,:]*data[("PartType0","Density")],'K*km*s**(-1)*code_mass/code_length**3') def _WCII(field,data): return ds.arr(wcii_particles[:]*data[("PartType0","Density")],'K*km*s**(-1)*code_mass/code_length**3') table = TableReader(lookup_npzfilename) table.limitsMode = "leave" #table.limitsMode='clip' table.copyPoints = True def find_between( s, first, last ): try: start = s.index( first ) + len( first ) end = s.index( last, start ) return s[start:end] except ValueError: return "" def generate_lines(package): table = TableReader(lookup_npzfilename) table.limitsMode = "leave" redshift_particles = package[0] column_particles = package[1] metal_particles = package[2] nh_particles = package[3] sfr_particles = package[4] output_new = table.getValues( redshift_particles, column_particles, metal_particles, nh_particles, sfr_particles, units=units, log_input=False, log_output=False) wco_particles = output_new['co'] return wco_particles #find the overlapping lists of gadget files and pdfiles gizmo_file_list = [] pd_file_list = [] pd_snaps = [] gizmo_snaps = [] obj = caesar.load(caesarfile) for galaxy in galaxies: try: filter_galaxy(snapshot,caesarfile,galaxy,'temp.hdf5',halos=False) snapshot = 'temp.hdf5' except: print("Error in filter_galaxy: not filtering") pass ds = yt.load(snapshot) if ds.cosmological_simulation == 0: ds = yt.load(snapshot,unit_base=unit_base,bounding_box=bbox) ds.index ad = ds.all_data() center = obj.galaxies[galaxy].pos.in_units('code_length') #glist = obj.galaxies[galaxy].glist glist = np.arange(len(ad[("PartType0","Masses")])) nparticles = len(glist) mass = ad[('PartType0','Masses')][glist].in_units('Msun')#*ad[('PartType0', 'NeutralHydrogenAbundance')] hsml = ad[('PartType0','SmoothingLength')][glist].in_units('pc') dens = ad[('PartType0', 'Density')][glist].in_units('g/cm**3')#*ad[('PartType0', 'NeutralHydrogenAbundance')] redshift_particles = np.repeat(ds.current_redshift,nparticles) metal_particles = ad[("PartType0",'Metallicity_00')][glist]/0.013 #metal_particles[metal_particles < 0.1] = 0.1 #have to set this floor or else we'll get negative CO fluxes #DEBUG 071019 #metal_particles = np.ones(len(glist)) wco_particles = np.zeros(nparticles) wci_particles = np.zeros(nparticles) wcii_particles = np.zeros(nparticles) sfr_particles = np.repeat(obj.galaxies[galaxy].sfr.value,nparticles) nh_particles = (dens/const.mass_hydrogen).in_units('cm**-3').value #THIS IS SOMETHING WE CAN LOOK AT IF WE DON'T HAVE SUFFICIENT COLUMN: THE HSML AS THE SIZE column_particles = (dens*hsml).in_units('Msun/pc**2').value column_particles *= (4./3*np.pi) #DEBUG for i in range(len(column_particles)): column_particles[i] =np.max((75,column_particles[i])) #volume = mass/dens #r = ((3./4*volume/np.pi)**(1./3)).in_units('cm') #column_particles = (dens*r).in_units('Msun/pc**2').value #THIS IS SOMETHING WE CAN LOOK AT IF WE DON'T HAVE SUFFICIENT #DENSITY: THE TEMPERATURE IS SET AS CONSTANT BASED ON CO #OBSERVATIONS, BUT INSTEAD PERHAPS WE SHOULD TAKE THE MASS #WEIGHTED VALUES FROM LI, NARAYANAN, DAVE & KRUMHOLZ FOR ENTIRE #CLOUDS gamma = 1.4 cs = np.sqrt(gamma*astropy_constants.k_B/astropy_constants.m_p*10.*u.K) #assuming temp of 10K sigma_vir = 2.2 * (mass/1.e5)**1./4 sigma_vir = (sigma_vir.value)*u.km/u.s mach = sigma_vir.cgs/cs.cgs sigma_p_sq = np.log(1.+ 3.*mach**2./4) turbulent_compression_factor =np.exp(sigma_p_sq/2.) if turb_factor > 0: #THIS IS SOMETHING WE CAN LOOK AT IF WE DON'T GET SUFFICIENT COLUMN: THE COLUMN DENSITY * THE TURBULENT COMPRESSION FACTOR nh_particles *= turb_factor*turbulent_compression_factor.flatten().value column_particles *= turb_factor*turbulent_compression_factor.flatten().value p = Pool(processes=nprocesses) nchunks = nprocesses chunk_start_indices = [] chunk_start_indices.append(0) #the start index is obviously 0 #this should just be int(nparticles/nchunks) but in case particles < nchunks, we need to ensure that this is at least 1 delta_chunk_indices = np.max([int(nparticles / nchunks),1]) print ('delta_chunk_indices = ',delta_chunk_indices) for n in range(1,nchunks): chunk_start_indices.append(chunk_start_indices[n-1]+delta_chunk_indices) redshift_list_of_chunks = [] column_list_of_chunks = [] metal_list_of_chunks = [] nh_list_of_chunks = [] sfr_list_of_chunks = [] packages = [] for n in range(nchunks): redshift_list_chunk = redshift_particles[chunk_start_indices[n]:chunk_start_indices[n]+delta_chunk_indices] column_list_chunk = column_particles[chunk_start_indices[n]:chunk_start_indices[n]+delta_chunk_indices] metal_list_chunk = metal_particles[chunk_start_indices[n]:chunk_start_indices[n]+delta_chunk_indices] nh_list_chunk = nh_particles[chunk_start_indices[n]:chunk_start_indices[n]+delta_chunk_indices] sfr_list_chunk = sfr_particles[chunk_start_indices[n]:chunk_start_indices[n]+delta_chunk_indices] #if we're on the last chunk, we might not have the full list included, so need to make sure that we have that here if n == nchunks-1: redshift_list_chunk = redshift_particles[chunk_start_indices[n]::] column_list_chunk = column_particles[chunk_start_indices[n]::] metal_list_chunk = metal_particles[chunk_start_indices[n]::] nh_list_chunk = nh_particles[chunk_start_indices[n]::] sfr_list_chunk = sfr_particles[chunk_start_indices[n]::] redshift_list_of_chunks.append(redshift_list_chunk) column_list_of_chunks.append(column_list_chunk) metal_list_of_chunks.append(metal_list_chunk) nh_list_of_chunks.append(nh_list_chunk) sfr_list_of_chunks.append(sfr_list_chunk) packages.append([redshift_list_chunk,column_list_chunk,metal_list_chunk,nh_list_chunk,sfr_list_chunk]) '''#this is the code to actually run the pool.map version of the table generation. doesn't really seem necessary but if you end up executing it, just need to change the return statements for generate_lines to also return CI and CII t1=datetime.now() chunk_sol = p.map(generate_lines,[arg for arg in packages]) wco_partidcles = np.concatenate((chunk_sol[0::]),axis=1) t2=datetime.now() print ('Execution time map = '+str(t2-t1)) ''' t1=datetime.now() output_new = table.getValues( redshift_particles, column_particles, metal_particles, nh_particles, sfr_particles, units=units, log_input=False, log_output=False) t2=datetime.now() print ('Execution time map = '+str(t2-t1)) wco_particles = output_new['co']*ad[('PartType0', 'NeutralHydrogenAbundance')] wci_particles = output_new['ci']*ad[('PartType0', 'NeutralHydrogenAbundance')] wcii_particles = output_new['cii']*ad[('PartType0', 'NeutralHydrogenAbundance')] try: h2_abu_particles = ad[('PartType0', 'FractionH2')][glist] hi_abu_particles = 1.-h2_abu_particles except: h2_abu_particles = output_new['h2'] hi_abu_particles = output_new['hi'] h2_mass = mass*h2_abu_particles hi_mass = mass*hi_abu_particles if units=='lumPerH': #if we're doing in terms of erg/s/h then we need to multiply by the number of H nucleons num_hydrogen = mass.in_units('g')/const.mass_hydrogen.in_units('g') wco_particles *= num_hydrogen wci_particles *= num_hydrogen wcii_particles *= num_hydrogen #now for wco #wco = np.random.random(len(ad["PartType0","Masses"])) wco_particles_dict = {} wci_particles_dict = {} wcii_particles_dict = {} for i in range(nlevels): wco_particles_dict['wco_particles'+str(i+1)+str(i)] = wco_particles[i,:] for i in range(2): wci_particles_dict['wci_particles'+str(i+1)+str(i)] = wci_particles[i,:] wcii_particles_dict['wcii_particles10'] = wcii_particles[:] print("adding CO/CI/CII fields to the yt dataset") ds.add_field(("PartType0","wco10"),function=_WCO10,units='K*km*s**(-1)*code_mass/code_length**3',particle_type=True) ds.add_field(("PartType0","wco21"),function=_WCO21,units='K*km*s**(-1)*code_mass/code_length**3',particle_type=True) ds.add_field(("PartType0","wco32"),function=_WCO32,units='K*km*s**(-1)*code_mass/code_length**3',particle_type=True) ds.add_field(("PartType0","wco43"),function=_WCO43,units='K*km*s**(-1)*code_mass/code_length**3',particle_type=True) ds.add_field(("PartType0","wco54"),function=_WCO54,units='K*km*s**(-1)*code_mass/code_length**3',particle_type=True) ds.add_field(("PartType0","wco65"),function=_WCO65,units='K*km*s**(-1)*code_mass/code_length**3',particle_type=True) ds.add_field(("PartType0","wco76"),function=_WCO76,units='K*km*s**(-1)*code_mass/code_length**3',particle_type=True) ds.add_field(("PartType0","wco87"),function=_WCO87,units='K*km*s**(-1)*code_mass/code_length**3',particle_type=True) ds.add_field(("PartType0","wco98"),function=_WCO98,units='K*km*s**(-1)*code_mass/code_length**3',particle_type=True) ds.add_field(("PartType0","wco109"),function=_WCO98,units='K*km*s**(-1)*code_mass/code_length**3',particle_type=True) ds.add_field(("PartType0","wci10"),function=_WCI10,units='K*km*s**(-1)*code_mass/code_length**3',particle_type=True) ds.add_field(("PartType0","wci21"),function=_WCI21,units='K*km*s**(-1)*code_mass/code_length**3',particle_type=True) ds.add_field(("PartType0","wcii"),function=_WCII,units='K*km*s**(-1)*code_mass/code_length**3',particle_type=True) print("adding deposited data fields to the yt dataset") #ds.add_field(("PartType0","wco"),function=_WCO,units='K*km*s**(-1)',particle_type=True) #ds.add_deposited_particle_field(("PartType0","wco"),'sum') for i in range(nlevels): ds.add_deposited_particle_field(("PartType0","wco"+str(i+1)+str(i)),'sum') ds.add_deposited_particle_field(("PartType0","wco"+str(i+1)+str(i)),'sum') for i in range(2): ds.add_deposited_particle_field(("PartType0","wci"+str(i+1)+str(i)),'sum') ds.add_deposited_particle_field(("PartType0","wcii"),'sum') #first, compute the renormalization factor that we used to correctly deposit the wco particles ds.add_field(("PartType0","manual_renorm_density"),function=_manual_renorm_density,units='code_mass/code_length**3',particle_type=True) ds.add_deposited_particle_field(("PartType0","manual_renorm_density"),"sum") px_h_renorm = yt.ProjectionPlot(ds,'z',('deposit','PartType0_sum_manual_renorm_density'),center=obj.galaxies[galaxy].pos.in_units('code_length'),width=(zoom_boxsize,'kpc')) px_h_renorm.save('renorm.png') #proj = ds.proj(('PartType0_sum_manual_renorm_density'),1,center=obj.galaxies[galaxy].pos.in_units('code_length')) #h_renorm_frb = proj.to_frb((zoom_boxsize,'kpc'),(dim,dim),obj.galaxies[galaxy].pos.in_units('code_length')) #h_renorm_frb = h_renorm_frb[('PartType0_sum_manual_renorm_density')].in_units('g/cm**2') h_renorm_frb = px_h_renorm.frb[('deposit','PartType0_sum_manual_renorm_density')] #second, compute the wco/ci/cii map and divide out the renormalization factor px_co = yt.ProjectionPlot(ds,'z',('deposit','PartType0_sum_wco10'),center=obj.galaxies[galaxy].pos.in_units('code_length'),width=(zoom_boxsize,'kpc')) px_co.save('co_proj.png') #proj = ds.proj(('deposit','PartType0_sum_wco10'),1,center=obj.galaxies[galaxy].pos.in_units('code_length')) #co_frb = proj.to_frb((zoom_boxsize,'kpc'),(dim,dim),obj.galaxies[galaxy].pos.in_units('code_length')) #co_frb = (co_frb[('deposit','PartType0_sum_wco10')]/h_renorm_frb).in_units('K*km/s') co_frb = px_co.frb[('deposit', 'PartType0_sum_wco10')]/h_renorm_frb print("in the middle, co_frb = ",np.sum(co_frb[~np.isnan(co_frb)])) px_ci = yt.ProjectionPlot(ds,'z',('deposit','PartType0_sum_wci10'),center=obj.galaxies[galaxy].pos.in_units('code_length'),width=(zoom_boxsize,'kpc')) px_ci.save('ci_proj.png') ci_frb = px_ci.frb[('deposit', 'PartType0_sum_wci10')]/h_renorm_frb px_cii = yt.ProjectionPlot(ds,'z',('deposit','PartType0_sum_wcii'),center=obj.galaxies[galaxy].pos.in_units('code_length'),width=(zoom_boxsize,'kpc')) px_cii.save('cii_proj.png') cii_frb = px_cii.frb[('deposit', 'PartType0_sum_wcii')]/h_renorm_frb #third, get the real column density from the SPH particles px_h = yt.ProjectionPlot(ds,'z',('deposit','PartType0_smoothed_density'),center=obj.galaxies[galaxy].pos.in_units('code_length'),width=(zoom_boxsize,'kpc')) px_h.set_unit(('deposit','PartType0_smoothed_density'),'g*cm**(-2)') px_h.save('density.png') #proj = ds.proj(('deposit','PartType0_smoothed_density'),1,center=obj.galaxies[galaxy].pos.in_units('code_length')) #h_frb = proj.to_frb((zoom_boxsize,'kpc'),(dim,dim),obj.galaxies[galaxy].pos.in_units('code_length')) #h_frb=(h_frb[('deposit','PartType0_smoothed_density')]/const.mass_hydrogen).in_units('cm**-2') h_frb = px_h.frb[('deposit','PartType0_smoothed_density')]/const.mass_hydrogen #fourth get fmol ds.add_field(("PartType0","fmol"),function=_fmol,units='code_mass/code_length**3',particle_type=True) ds.add_deposited_particle_field(("PartType0","fmol"),"sum") px_fmol = yt.ProjectionPlot(ds,'z',("deposit","PartType0_sum_fmol"),center=obj.galaxies[galaxy].pos.in_units('code_length'),width=(zoom_boxsize,'kpc')) px_fmol.save('junk3.png') #proj = ds.proj(("deposit","PartType0_sum_fmol"),1,center=obj.galaxies[galaxy].pos.in_units('code_length')) #fmol_frb = proj.to_frb((zoom_boxsize,'kpc'),(dim,dim),obj.galaxies[galaxy].pos.in_units('code_length')) #fmol_frb = fmol_frb[("deposit","PartType0_sum_fmol")]/h_renorm_frb fmol_frb = px_fmol.frb[('deposit','PartType0_sum_fmol')]/h_renorm_frb #fifth, deposit the neutral hydrogen abundance just so we can include it with the xco. this isn't used for anything else really ds.add_field(("PartType0","NeutralGasDensity"),function=_neutralhydrogen,units='code_mass/code_length**3',particle_type=True) ds.add_deposited_particle_field(("PartType0","NeutralGasDensity"),"sum") px_NHA = yt.ProjectionPlot(ds,'z',("deposit","PartType0_sum_NeutralGasDensity"),center=obj.galaxies[galaxy].pos.in_units('code_length'),width=(zoom_boxsize,'kpc')) NHA_frb = px_NHA.frb[("deposit","PartType0_sum_NeutralGasDensity")]/h_renorm_frb NHA_frb[np.isnan(NHA_frb)] = 0 xco_frb = NHA_frb*h_frb/co_frb*fmol_frb #Plot the histograms of the CO map fig = plt.figure() ax1 = fig.add_subplot(221) #we set up this 1D array where we mask out the nans since we might #have a ton after filtering the galaxy and putting a bunch of 0s #in the grid xco_hist = xco_frb.value.ravel()[~np.isnan(xco_frb.value.ravel())] NH_hist = h_frb.value.ravel()[~np.isnan(xco_frb.value.ravel())] fmol_hist = fmol_frb.value.ravel()[~np.isnan(xco_frb.value.ravel())] co_frb_hist = np.take(co_frb.value.ravel(),~np.isnan(xco_frb.value.ravel())) # plotting - leaving out for now p,b,h = plt.hist(np.log10(xco_hist[xco_hist>0]),bins=50)#,weights=co_frb_hist[xco_hist>0]) ax1.set_yscale('log') ax1.set_xlabel(r'log$_\mathrm{10}$(cm$^{-2}$ (K-km/s)$^{-1}$)') ax1.set_ylabel('N') ax1.set_xlim([15,30]) ax1.set_title('Xco') ax2 = fig.add_subplot(222) p,b,h = plt.hist(np.log10(NH_hist[np.nonzero(NH_hist)]),bins=50,weights=co_frb_hist[np.nonzero(NH_hist)]) #p,b,h = plt.hist(np.log10(column_particles),bins=50) ax2.set_yscale('log') ax2.set_xlabel(r'log$_\mathrm{10}$(cm$^{-2}$)') ax2.set_ylabel('N') ax2.set_title(r'N_\mathrm{H2}$') ax3 = fig.add_subplot(223) p,b,h = plt.hist(np.log10(fmol_hist[np.nonzero(fmol_hist)]),bins=50,weights=co_frb_hist[np.nonzero(fmol_hist)]) ax3.set_yscale('log') ax3.set_xlabel(r'log fraction') ax3.set_ylabel('N') ax3.set_title(r'f$_\mathrm{mol}$') ax4 = fig.add_subplot(224) p,b,h = plt.hist(np.log10(co_frb_hist[co_frb_hist>0]),bins=50)#,weights=co_frb_hist[np.nonzero(co_frb_hist)]) ax4.set_yscale('log') ax4.set_ylabel('N') ax4.set_xlabel(r'K-km/s') ax4.set_title('Wco') fig.subplots_adjust(hspace=0.55, wspace=0.55) fig.savefig(outdir+'xco_hist.'+str(galaxy)+'.png',dpi=300) #Plot the CO map itself fig = plt.figure() ax = fig.add_subplot(111) for jlower in range(9): proj = ds.proj(('PartType0_sum_manual_renorm_density'),2,center=obj.galaxies[galaxy].pos.in_units('code_length')) h_renorm_frb = proj.to_frb((zoom_boxsize,'kpc'),(dim,dim),obj.galaxies[galaxy].pos.in_units('code_length')) h_renorm_frb = h_renorm_frb[('PartType0_sum_manual_renorm_density')] proj = ds.proj(('deposit','PartType0_sum_wco'+str(jlower+1)+str(jlower)),2,center=obj.galaxies[galaxy].pos.in_units('code_length')) co_frb = proj.to_frb((zoom_boxsize,'kpc'),(dim,dim),obj.galaxies[galaxy].pos.in_units('code_length')) co_frb = (co_frb[('deposit','PartType0_sum_wco'+str(jlower+1)+str(jlower))]/h_renorm_frb).in_units('K*km/s') print("at the end, co_frb = ",np.sum(co_frb[~np.isnan(co_frb)])) #imgplot=plt.imshow(np.log10(co_frb),origin='lower',interpolation='nearest',extent=[-zoom_boxsize/2,zoom_boxsize/2,-zoom_boxsize/2,zoom_boxsize/2]) #imgplot.set_cmap('viridis') #cb = plt.colorbar(imgplot) #cb.set_label('log($\mathrm{W_{CO (J=1-0)}}$ K-km/s)') #plt.savefig('comap.png',dpi=300) print("Writing CO to disk") hdu = fits.PrimaryHDU(co_frb) hdu.writeto(outdir+'/galaxy'+str(galaxy)+'.co'+str(jlower+1)+str(jlower)+'.fits',overwrite=True) #Plot the CII Map fig = plt.figure() ax = fig.add_subplot(111) proj = ds.proj(('deposit','PartType0_sum_wcii'),2,center=obj.galaxies[galaxy].pos.in_units('code_length')) cii_frb = proj.to_frb((zoom_boxsize,'kpc'),(dim,dim),obj.galaxies[galaxy].pos.in_units('code_length')) cii_frb = (cii_frb[('deposit','PartType0_sum_wcii')]/h_renorm_frb).in_units('K*km/s') imgplot=plt.imshow(np.log10(cii_frb),origin='lower',interpolation='nearest',extent=[-zoom_boxsize/2,zoom_boxsize/2,-zoom_boxsize/2,zoom_boxsize/2]) imgplot.set_cmap('viridis') cb = plt.colorbar(imgplot) cb.set_label('log($\mathrm{W_{CII (J=1-0)}}$ K-km/s)') plt.savefig('ciimap.png',dpi=300) print("Writing CII to disk") hdu = fits.PrimaryHDU(cii_frb) hdu.writeto(outdir+'/galaxy'+str(galaxy)+'.cii.fits',overwrite=True) |