Paste #730
Welcome To LodgeIt
Welcome to the LodgeIt pastebin. In order to use the notification feature a 31 day cookie with an unique ID was created for you. The lodgeit database does not store any information about you, it's just used for an advanced pastebin experience :-). Read more on the about lodgeit page. Have fun :-)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 | import numpy as np from sedpy.observate import load_filters import h5py import prospect.io.read_results as pread from prospect.models import priors, transforms,sedmodel from prospect.sources import FastStepBasis from scipy.stats import truncnorm from prospect.io import write_results as writer from prospect.fitting import fit_model import sys, os #from astropy.cosmology import Planck13 from astropy.cosmology import FlatLambdaCDM from astropy import units as u from astropy import constants import fsps import sedpy #------------------------ # Convienence Functions #------------------------ def get_best(res, **kwargs): imax = np.argmax(res['lnprobability']) theta_best = res['chain'][imax, :].copy() return theta_best def find_nearest(array,value): idx = (np.abs(np.array(array)-value)).argmin() return idx def zfrac_to_masses_log(logmass=None, z_fraction=None, agebins=None, **extras): sfr_fraction = np.zeros(len(z_fraction) + 1) sfr_fraction[0] = 1.0 - z_fraction[0] for i in range(1, len(z_fraction)): sfr_fraction[i] = np.prod(z_fraction[:i]) * (1.0 - z_fraction[i]) sfr_fraction[-1] = 1 - np.sum(sfr_fraction[:-1]) # convert to mass fractions time_per_bin = np.diff(10**agebins, axis=-1)[:, 0] mass_fraction = sfr_fraction * np.array(time_per_bin) mass_fraction /= mass_fraction.sum() if (mass_fraction < 0).any(): idx = mass_fraction < 0 if np.isclose(mass_fraction[idx],0,rtol=1e-8): mass_fraction[idx] = 0.0 else: raise ValueError('The input z_fractions are returning negative masses!') masses = 10**logmass * mass_fraction return masses #---------------------- # SSP function #----------------------- def build_sps(**kwargs): """ This is our stellar population model which generates the spectra for stars of a given age and mass. Because we are using a non parametric SFH model, we do have to use a different SPS model than before """ from prospect.sources import FastStepBasis sps = FastStepBasis(zcontinuous=1) return sps def build_model(z,**kwargs): print('z:',z) cosmo = FlatLambdaCDM(Om0=0.3,Tcmb0 = 2.725,H0 = 67.11) if(z<10**-4): dl = (10*u.Mpc) else: dl = cosmo.luminosity_distance(z).to(u.Mpc) print('building model') model_params = [] #basics model_params.append({'name': "lumdist", "N": 1, "isfree": False,"init": dl.value,"units": "Mpc"}) model_params.append({'name':'zred','N':1,'isfree':False,'init':z}) model_params.append({'name': 'imf_type', 'N': 1,'isfree': False,'init': 1}) model_params.append({'name': 'dust_type', 'N': 1,'isfree': False,'init': 2,'prior': None}) model_params.append({'name': 'dust2', 'N': 1,'isfree': True, 'init': 0.1,'prior': priors.ClippedNormal(mini=0.0, maxi=2.0, mean=0.0, sigma=0.3)}) model_params.append({'name': 'add_dust_emission', 'N': 1,'isfree': False,'init': 1,'prior': None}) model_params.append({'name': 'duste_gamma', 'N': 1,'isfree': True,'init': 0.01,'prior': priors.TopHat(mini=0.0, maxi=1.0)}) model_params.append({'name': 'duste_umin', 'N': 1,'isfree': True,'init': 1.0,'prior': priors.TopHat(mini=0.1, maxi=25.0)}) model_params.append({'name': 'duste_qpah', 'N': 1,'isfree': True,'init': 3.0,'prior': priors.TopHat(mini=0.0, maxi=10.0)}) model_params.append({'name': 'add_agb_dust_model', 'N': 1,'isfree': False,'init': 0}) #M-Z model_params.append({'name': 'logmass', 'N': 1,'isfree': True,'init': 8.0,'prior': priors.Uniform(mini=7., maxi=14.)}) model_params.append({'name': 'logzsol', 'N': 1,'isfree': True,'init': -0.5,'prior': priors.Uniform(mini=-1.5, maxi=0.5)}) model_params.append({'name': "sfh", "N": 1, "isfree": False, "init": 3}) model_params.append({'name': "mass", 'N': 3, 'isfree': False, 'init': 1., 'depends_on':zfrac_to_masses_log}) model_params.append({'name': "agebins", 'N': 1, 'isfree': False,'init': []}) model_params.append({'name': "z_fraction", "N": 2, 'isfree': True, 'init': [0, 0],'prior': priors.Beta(alpha=1.0, beta=1.0, mini=0.0, maxi=1.0)}) #here we set the number and location of the timebins, and edit the other SFH parameters to match in size n = [p['name'] for p in model_params] tuniv = np.round(cosmo.age(z).to('Gyr').value,decimals=1) #Gyr, age at z=2 agelims = np.linspace(8,np.log10(tuniv)+9,9) agelims = [0]+agelims.tolist() print(agelims) nbins = len(agelims)-1 agebins = np.array([agelims[:-1], agelims[1:]]) zinit = np.array([(i-1)/float(i) for i in range(nbins, 1, -1)]) # Set up the prior in `z` variables that corresponds to a dirichlet in sfr # fraction. alpha = np.arange(nbins-1, 0, -1) zprior = priors.Beta(alpha=alpha, beta=np.ones_like(alpha), mini=0.0, maxi=1.0) model_params[n.index('mass')]['N'] = nbins model_params[n.index('agebins')]['N'] = nbins model_params[n.index('agebins')]['init'] = agebins.T model_params[n.index('z_fraction')]['N'] = nbins-1 model_params[n.index('z_fraction')]['init'] = zinit model_params[n.index('z_fraction')]['prior'] = zprior model = sedmodel.SedModel(model_params) return model #------------------ # Build Observations #------------------- def build_obs(spec_file,z,snr,all_filt=True,**kwargs): obs = {} cosmo = FlatLambdaCDM(H0=67.11, Om0=0.3, Tcmb0=2.725) t_H = cosmo.age(z).to('Gyr').value t_0 = cosmo.age(0).to('Gyr').value print() info = np.load('galaxy_sed.npz') # radiative transfer saves wavelength, nuL_nu (also equivalent to lambda L_lambda) # convert to observed quantities wav = info['wav']*u.micron flux = info['lum']*u.erg/u.s wav = wav.to(u.AA) dl = cosmo.luminosity_distance(z) flux = flux/(4.*3.14*dl**2.) nu = constants.c.cgs/(wav.to(u.cm)) nu = nu.to(u.Hz) fnu = flux*(1+z)/nu fnu = fnu.to(u.Jy) maggies = fnu/3631. flux_aa = flux/wav/(1+z) flux_aa = flux_aa.to(u.erg/u.s/(u.cm**2)/u.AA) other_filts = ['galex_FUV', 'galex_NUV', 'wfc3_uvis_f275w', 'wfc3_uvis_f336w', 'sdss_u0', 'sdss_g0', 'wfc3_uvis_f475w', 'wfc3_uvis_f555w', 'wfc3_uvis_f606w', 'sdss_r0', 'jwst_f070w', 'sdss_i0', 'wfc3_uvis_f814w', 'sdss_z0', 'jwst_f090w', 'wfc3_ir_f105w', 'wfc3_ir_f110w', 'jwst_f115w', 'wfc3_ir_f125w', 'wfc3_ir_f140w', 'jwst_f150w', 'wfc3_ir_f160w', 'jwst_f200w', 'jwst_f277w', 'wise_w1', 'jwst_f356w', 'jwst_f444w', 'wise_w2', 'jwst_f560w', 'jwst_f770w', 'jwst_f1000w', 'wise_w3', 'jwst_f1280w', 'jwst_f1500w'] reddest_filts = ['jwst_f1800w', 'jwst_f2100w', 'wise_w4', 'spitzer_mips_24', 'herschel_pacs_70', 'herschel_pacs_100', 'herschel_pacs_160', 'herschel_spire_250', 'herschel_spire_350', 'herschel_spire_500'] if(all_filt): all_filters = other_filts+reddest_filts else: all_filters = reddest_filts filters = load_filters(all_filters) # redshift wavelengths wav = wav*(1.+z) gal_phot = sedpy.observate.getSED(wav.value,flux_aa.value,filterlist = filters,linear_flux = True) flux_mag = np.asarray(gal_phot) unc_mag = gal_phot/snr obs['filters'] = filters obs['maggies'] = flux_mag obs['maggies_unc'] = unc_mag obs['phot_mask'] = np.isfinite(flux_mag) obs['wavelength'] = None obs['spectrum'] = None obs['rest_sed'] = maggies obs['wav'] = wav obs['z_val'] = z return obs def build_all(phot_file,snr,z,all_filt,**kwargs): return (build_obs(phot_file,z,snr,all_filt,**kwargs), build_model(z,**kwargs), build_sps(**kwargs)) run_params = {'verbose':False, 'debug':False, 'output_pickles': True, 'nested_bound': 'multi', # bounding method 'nested_sample': 'auto', # sampling method 'nested_nlive_init': 400, 'nested_nlive_batch': 200, 'nested_bootstrap': 0, 'nested_dlogz_init': 0.05, 'nested_weight_kwargs': {"pfrac": 1.0}, } if __name__ == '__main__': phot_file = f'galaxy_sed.npz' z = 2 SNR = 10 all_filt = True obs, model, sps = build_all(phot_file,SNR,z,all_filt,**run_params) outfile = 'test_prosp_rt_all_filt.h5' run_params["sps_libraries"] = sps.ssp.libraries run_params["param_file"] = __file__ print('Running fits') output = fit_model(obs, model, sps, [None,None],**run_params) print('Done. Writing now') print(model) print(obs) writer.write_hdf5(outfile, run_params, model, obs, output["sampling"][0], output["optimization"][0], tsample=output["sampling"][1], toptimize=output["optimization"][1]) |